消息队列和事件循环:页面是怎么“活”起来的?
前面我们讲到了每个渲染进程都有一个主线程,并且主线程非常繁忙,既要处理 DOM,又要计算样式,还要处理布局,同时还需要处理 JavaScript 任务以及各种输入事件。要让这么多不同类型的任务在主线程中有条不紊地执行,这就需要一个系统来统筹调度这些任务,这个统筹调度系统就是我们今天要讲的消息队列和事件循环系统。
在写这篇文章之前,我翻阅了大量的资料,却发现没有一篇文章能把消息循环系统给讲清楚的,所以我决定用一篇文章来专门介绍页面的事件循环系统。事件循环非常底层且非常重要,学会它能让你理解页面到底是如何运行的, 所以在本篇文章中,我们会将页面的事件循环给梳理清楚、讲透彻。
为了能让你更加深刻地理解事件循环机制,我们就从最简单的场景来分析,然后带你一步步了解浏览器页面主线程是如何运作的。
需要说明的是,文章中的代码我会采用 C++ 来示范。如果你不熟悉 C++,也没有关系,这里并没有涉及到任何复杂的知识点,只要你了解 JavaScript 或 Python,你就会看懂。
使用单线程处理安排好的任务
我们先从最简单的场景讲起,比如有如下一系列的任务:
任务 1:1+2
任务 2:20/5
任务 3:7*8
任务 4:打印出任务 1、任务 2、任务 3 的运算结果
现在要在一个线程中去执行这些任务,通常我们会这样编写代码:
void MainThread(){
int num1 = 1+2; //任务1
int num2 = 20/5; //任务2
int num3 = 7*8; //任务3
print("最终计算的值为:%d,%d,%d",num1,num2,num3); //任务4
}
在上面的执行代码中,我们把所有任务代码按照顺序写进主线程里,等线程执行时,这些任务会按照顺序在线程中依次被执行;等所有任务执行完成之后,线程会自动退出。可以参考下图来直观地理解下其执行过程:
在线程运行过程中处理新任务
但并不是所有的任务都是在执行之前统一安排好的,大部分情况下,新的任务是在线程运行过程中产生的。比如在线程执行过程中,又接收到了一个新的任务要求计算“10+2”,那上面那种方式就无法处理这种情况了。
要想在线程运行过程中,能接收并执行新的任务,就需要采用事件循环机制。我们可以通过一个 for 循环语句来监听是否有新的任务,如下面的示例代码:
//GetInput
//等待用户从键盘输入一个数字,并返回该输入的数字
int GetInput(){
int input_number = 0;
cout<<"请输入一个数:";
cin>>input_number;
return input_number;
}
//主线程(Main Thread)
void MainThread(){
for(;;){
int first_num = GetInput();
int second_num = GetInput();
result_num = first_num + second_num;
print("最终计算的值为:%d",result_num);
}
}
相较于第一版的线程,这一版的线程做了两点改进。 **
第一点引入了循环机制**,具体实现方式是在线程语句最后添加了一个 for 循环语句,线程会一直循环执行。
第二点是引入了事件,可以在线程运行过程中,等待用户输入的数字,等待过程中线程处于暂停状态,一旦接收到用户输入的信息,那么线程会被激活,然后执行相加运算,最后输出结果。
通过引入事件循环机制,就可以让该线程“活”起来了,我们每次输入两个数字,都会打印出两数字相加的结果,你可以结合下图来参考下这个改进版的线程:
处理其他线程发送过来的任务
上面我们改进了线程的执行方式,引入了事件循环机制,可以让其在执行过程中接受新的任务。不过在第二版的线程模型中,所有的任务都是来自于线程内部的,如果另外一个线程想让主线程执行一个任务,利用第二版的线程模型是无法做到的。
那下面我们就来看看其他线程是如何发送消息给渲染主线程的,具体形式你可以参考下图:
从上图可以看出,渲染主线程会频繁接收到来自于 IO 线程的一些任务,接收到这些任务之后,渲染进程就需要着手处理,比如接收到资源加载完成的消息后,渲染进程就要着手进行 DOM 解析了;接收到鼠标点击的消息后,渲染主线程就要开始执行相应的 JavaScript 脚本来处理该点击事件。
那么如何设计好一个线程模型,能让其能够接收其他线程发送的消息呢?
一个通用模式是使用消息队列。在解释如何实现之前,我们先说说什么是消息队列,可以参考下图:
从图中可以看出,消息队列是一种数据结构,可以存放要执行的任务。它符合队列“先进先出”的特点,也就是说要添加任务的话,添加到队列的尾部;要取出任务的话,从队列头部去取。
有了队列之后,我们就可以继续改造线程模型了,改造方案如下图所示:
从上图可以看出,我们的改造可以分为下面三个步骤:
添加一个消息队列;
IO 线程中产生的新任务添加进消息队列尾部;
渲染主线程会循环地从消息队列头部中读取任务,执行任务。
有了这些步骤之后,那么接下来我们就可以按步骤使用代码来实现第三版的线程模型。
首先,构造一个队列。当然,在本篇文章中我们不需要考虑队列实现的细节,只是构造队列的接口:
class TaskQueue{
public:
Task takeTask(); //取出队列头部的一个任务
void pushTask(Task task); //添加一个任务到队列尾部
};
接下来,改造主线程,让主线程从队列中读取任务:
TaskQueue task_queue;
void ProcessTask();
void MainThread(){
for(;;){
Task task = task_queue.takeTask();
ProcessTask(task);
}
}
在上面的代码中,我们添加了一个消息队列的对象,然后在主线程的 for 循环代码块中,从消息队列中读取一个任务,然后执行该任务,主线程就这样一直循环往下执行,因此只要消息队列中有任务,主线程就会去执行。
主线程的代码就这样改造完成了。这样改造后,主线程执行的任务都全部从消息队列中获取。所以如果有其他线程想要发送任务让主线程去执行,只需要将任务添加到该消息队列中就可以了,添加任务的代码如下:
Task clickTask;
task_queue.pushTask(clickTask)
由于是多个线程操作同一个消息队列,所以在添加任务和取出任务时还会加上一个同步锁,这块内容你也要注意下。
处理其他进程发送过来的任务
通过使用消息队列,我们实现了线程之间的消息通信。在 Chrome 中,跨进程之间的任务也是频繁发生的,那么如何处理其他进程发送过来的任务?你可以参考下图:
从图中可以看出,渲染进程专门有一个 IO 线程用来接收其他进程传进来的消息,接收到消息之后,会将这些消息组装成任务发送给渲染主线程,后续的步骤就和前面讲解的“处理其他线程发送的任务”一样了,这里就不再重复了。
消息队列中的任务类型
现在你知道页面主线程是如何接收外部任务的了,那接下来我们再来看看消息队列中的任务类型有哪些。你可以参考下Chromium 的官方源码,这里面包含了很多内部消息类型,如输入事件(鼠标滚动、点击、移动)、微任务、文件读写、WebSocket、JavaScript 定时器等等。
除此之外,消息队列中还包含了很多与页面相关的事件,如 JavaScript 执行、解析 DOM、样式计算、布局计算、CSS 动画等。
以上这些事件都是在主线程中执行的,所以在编写 Web 应用时,你还需要衡量这些事件所占用的时长,并想办法解决单个任务占用主线程过久的问题。
如何安全退出
当页面主线程执行完成之后,又该如何保证页面主线程能够安全退出呢?Chrome 是这样解决的,确定要退出当前页面时,页面主线程会设置一个退出标志的变量,在每次执行完一个任务时,判断是否有设置退出标志。
如果设置了,那么就直接中断当前的所有任务,退出线程,你可以参考下面代码:
TaskQueue task_queue;
void ProcessTask();
bool keep_running = true;
void MainThread(){
for(;;){
Task task = task_queue.takeTask();
ProcessTask(task);
if(!keep_running) //如果设置了退出标志,那么直接退出线程循环
break;
}
}
页面使用单线程的缺点
上面讲述的就是页面线程的循环系统是如何工作的,那接下来,我们继续探讨页面线程的一些特征。
通过上面的介绍,你应该清楚了,页面线程所有执行的任务都来自于消息队列。消息队列是“先进先出”的属性,也就是说放入队列中的任务,需要等待前面的任务被执行完,才会被执行。鉴于这个属性,就有如下两个问题需要解决。
第一个问题是如何处理高优先级的任务。
比如一个典型的场景是监控 DOM 节点的变化情况(节点的插入、修改、删除等动态变化),然后根据这些变化来处理相应的业务逻辑。一个通用的设计的是,利用 JavaScript 设计一套监听接口,当变化发生时,渲染引擎同步调用这些接口,这是一个典型的观察者模式。
不过这个模式有个问题,因为 DOM 变化非常频繁,如果每次发生变化的时候,都直接调用相应的 JavaScript 接口,那么这个当前的任务执行时间会被拉长,从而导致执行效率的下降。
如果将这些 DOM 变化做成异步的消息事件,添加到消息队列的尾部,那么又会影响到监控的实时性,因为在添加到消息队列的过程中,可能前面就有很多任务在排队了。
这也就是说,如果 DOM 发生变化,采用同步通知的方式,会影响当前任务的执行效率;如果采用异步方式,又会影响到监控的实时性。
那该如何权衡效率和实时性呢?
针对这种情况,微任务就应用而生了,下面我们来看看微任务是如何权衡效率和实时性的。
通常我们把消息队列中的任务称为宏任务,每个宏任务中都包含了一个微任务队列,在执行宏任务的过程中,如果 DOM 有变化,那么就会将该变化添加到微任务列表中,这样就不会影响到宏任务的继续执行,因此也就解决了执行效率的问题。
等宏任务中的主要功能都直接完成之后,这时候,渲染引擎并不着急去执行下一个宏任务,而是执行当前宏任务中的微任务,因为 DOM 变化的事件都保存在这些微任务队列中,这样也就解决了实时性问题。
第二个是如何解决单个任务执行时长过久的问题。
因为所有的任务都是在单线程中执行的,所以每次只能执行一个任务,而其他任务就都处于等待状态。如果其中一个任务执行时间过久,那么下一个任务就要等待很长时间。可以参考下图:
从图中你可以看到,如果在执行动画过程中,其中有个 JavaScript 任务因执行时间过久,占用了动画单帧的时间,这样会给用户制造了卡顿的感觉,这当然是极不好的用户体验。针对这种情况,JavaScript 可以通过回调功能来规避这种问题,也就是让要执行的 JavaScript 任务滞后执行。至于浏览器是如何实现回调功能的,我们在后面的章节中再详细介绍。
实践:浏览器页面是如何运行的
有了上面的基础知识之后,我们最后来看看浏览器的页面是如何运行的。
你可以打开开发者工具,点击“Performance”标签,选择左上角的“start porfiling and load page”来记录整个页面加载过程中的事件执行情况,如下图所示:
从图中可以看出,我们点击展开了 Main 这个项目,其记录了主线程执行过程中的所有任务。图中灰色的就是一个个任务,每个任务下面还有子任务,其中的 Parse HTML 任务,是把 HTML 解析为 DOM 的任务。值得注意的是,在执行 Parse HTML 的时候,如果遇到 JavaScript 脚本,那么会暂停当前的 HTML 解析而去执行 JavaScript 脚本。
至于 Performance 工具,在后面的章节中我们还会详细介绍,在这里你只需要建立一个直观的印象就可以了。
宏任务和微任务:不是所有任务都是一个待遇
在前面几篇文章中,我们介绍了消息队列,并结合消息队列介绍了两种典型的 WebAPI——setTimeout 和 XMLHttpRequest,通过这两个 WebAPI 我们搞清楚了浏览器的消息循环系统是怎么工作的。不过随着浏览器的应用领域越来越广泛,消息队列中这种粗时间颗粒度的任务已经不能胜任部分领域的需求,所以又出现了一种新的技术——微任务。微任务可以在实时性和效率之间做一个有效的权衡。
从目前的情况来看,微任务已经被广泛地应用,基于微任务的技术有 MutationObserver、Promise 以及以 Promise 为基础开发出来的很多其他的技术。所以微任务的重要性也与日俱增,了解其底层的工作原理对于你读懂别人的代码,以及写出更高效、更具现代的代码有着决定性的作用。
有微任务,也就有宏任务,那这二者到底有什么区别?它们又是如何相互取长补短的?
宏任务
前面我们已经介绍过了,页面中的大部分任务都是在主线程上执行的,这些任务包括了:
渲染事件(如解析 DOM、计算布局、绘制);
用户交互事件(如鼠标点击、滚动页面、放大缩小等);
JavaScript 脚本执行事件;
网络请求完成、文件读写完成事件。
为了协调这些任务有条不紊地在主线程上执行,页面进程引入了消息队列和事件循环机制,渲染进程内部会维护多个消息队列,比如延迟执行队列和普通的消息队列。然后主线程采用一个 for 循环,不断地从这些任务队列中取出任务并执行任务。我们把这些消息队列中的任务称为宏任务。
消息队列中的任务是通过事件循环系统来执行的,这里我们可以看看在WHATWG 规范中是怎么定义事件循环机制的。
由于规范需要支持语义上的完备性,所以通常写得都会比较啰嗦,这里我就大致总结了下 WHATWG 规范定义的大致流程:
先从多个消息队列中选出一个最老的任务,这个任务称为 oldestTask;
然后循环系统记录任务开始执行的时间,并把这个 oldestTask 设置为当前正在执行的任务;
当任务执行完成之后,删除当前正在执行的任务,并从对应的消息队列中删除掉这个 oldestTask;
最后统计执行完成的时长等信息。
以上就是消息队列中宏任务的执行过程,通过前面的学习,相信你也很熟悉这套执行流程了。
宏任务可以满足我们大部分的日常需求,不过如果有对时间精度要求较高的需求,宏任务就难以胜任了,下面我们就来分析下为什么宏任务难以满足对时间精度要求较高的任务。
前面我们说过,页面的渲染事件、各种 IO 的完成事件、执行 JavaScript 脚本的事件、用户交互的事件等都随时有可能被添加到消息队列中,而且添加事件是由系统操作的,JavaScript 代码不能准确掌控任务要添加到队列中的位置,控制不了任务在消息队列中的位置,所以很难控制开始执行任务的时间。为了直观理解,你可以看下面这段代码:
<!DOCTYPE html>
<html>
<body>
<div id='demo'>
<ol>
<li>test</li>
</ol>
</div>
</body>
<script type="text/javascript">
function timerCallback2(){
console.log(2)
}
function timerCallback(){
console.log(1)
setTimeout(timerCallback2,0)
}
setTimeout(timerCallback,0)
</script>
</html>
在这段代码中,我的目的是想通过 setTimeout 来设置两个回调任务,并让它们按照前后顺序来执行,中间也不要再插入其他的任务,因为如果这两个任务的中间插入了其他的任务,就很有可能会影响到第二个定时器的执行时间了。
但实际情况是我们不能控制的,比如在你调用 setTimeout 来设置回调任务的间隙,消息队列中就有可能被插入很多系统级的任务。你可以打开 Performance 工具,来记录下这段任务的执行过程,也可参考文中我记录的图片:
setTimeout 函数触发的回调函数都是宏任务,如图中,左右两个黄色块就是 setTimeout 触发的两个定时器任务。
现在你可以重点观察上图中间浅红色区域,这里有很多一段一段的任务,这些是被渲染引擎插在两个定时器任务中间的任务。试想一下,如果中间被插入的任务执行时间过久的话,那么就会影响到后面任务的执行了。
所以说宏任务的时间粒度比较大,执行的时间间隔是不能精确控制的,对一些高实时性的需求就不太符合了,比如后面要介绍的监听 DOM 变化的需求。
微任务
在理解了宏任务之后,下面我们就可以来看看什么是微任务了。在上一篇文章中,我们介绍过异步回调的概念,其主要有两种方式。
第一种是把异步回调函数封装成一个宏任务,添加到消息队列尾部,当循环系统执行到该任务的时候执行回调函数。这种比较好理解,我们前面介绍的 setTimeout 和 XMLHttpRequest 的回调函数都是通过这种方式来实现的。
第二种方式的执行时机是在主函数执行结束之后、当前宏任务结束之前执行回调函数,这通常都是以微任务形式体现的。
那这里说的微任务到底是什么呢?
微任务就是一个需要异步执行的函数,执行时机是在主函数执行结束之后、当前宏任务结束之前。
不过要搞清楚微任务系统是怎么运转起来的,就得站在 V8 引擎的层面来分析下。
我们知道当 JavaScript 执行一段脚本的时候,V8 会为其创建一个全局执行上下文,在创建全局执行上下文的同时,V8 引擎也会在内部创建一个微任务队列。顾名思义,这个微任务队列就是用来存放微任务的,因为在当前宏任务执行的过程中,有时候会产生多个微任务,这时候就需要使用这个微任务队列来保存这些微任务了。不过这个微任务队列是给 V8 引擎内部使用的,所以你是无法通过 JavaScript 直接访问的。
也就是说每个宏任务都关联了一个微任务队列。那么接下来,我们就需要分析两个重要的时间点——微任务产生的时机和执行微任务队列的时机。
我们先来看看微任务是怎么产生的?在现代浏览器里面,产生微任务有两种方式。
第一种方式是使用 MutationObserver 监控某个 DOM 节点,然后再通过 JavaScript 来修改这个节点,或者为这个节点添加、删除部分子节点,当 DOM 节点发生变化时,就会产生 DOM 变化记录的微任务。
第二种方式是使用 Promise,当调用 Promise.resolve() 或者 Promise.reject() 的时候,也会产生微任务。
通过 DOM 节点变化产生的微任务或者使用 Promise 产生的微任务都会被 JavaScript 引擎按照顺序保存到微任务队列中。
好了,现在微任务队列中有了微任务了,那接下来就要看看微任务队列是何时被执行的。
通常情况下,在当前宏任务中的 JavaScript 快执行完成时,也就在 JavaScript 引擎准备退出全局执行上下文并清空调用栈的时候,JavaScript 引擎会检查全局执行上下文中的微任务队列,然后按照顺序执行队列中的微任务。WHATWG 把执行微任务的时间点称为检查点。当然除了在退出全局执行上下文式这个检查点之外,还有其他的检查点,不过不是太重要,这里就不做介绍了。
如果在执行微任务的过程中,产生了新的微任务,同样会将该微任务添加到微任务队列中,V8 引擎一直循环执行微任务队列中的任务,直到队列为空才算执行结束。也就是说在执行微任务过程中产生的新的微任务并不会推迟到下个宏任务中执行,而是在当前的宏任务中继续执行。
为了直观地理解什么是微任务,你可以参考下面我画的示意图(由于内容比较多,我将其分为了两张):
该示意图是在执行一个 ParseHTML 的宏任务,在执行过程中,遇到了 JavaScript 脚本,那么就暂停解析流程,进入到 JavaScript 的执行环境。从图中可以看到,全局上下文中包含了微任务列表。
在 JavaScript 脚本的后续执行过程中,分别通过 Promise 和 removeChild 创建了两个微任务,并被添加到微任务列表中。接着 JavaScript 执行结束,准备退出全局执行上下文,这时候就到了检查点了,JavaScript 引擎会检查微任务列表,发现微任务列表中有微任务,那么接下来,依次执行这两个微任务。等微任务队列清空之后,就退出全局执行上下文。
以上就是微任务的工作流程,从上面分析我们可以得出如下几个结论:
微任务和宏任务是绑定的,每个宏任务在执行时,会创建自己的微任务队列。
微任务的执行时长会影响到当前宏任务的时长。比如一个宏任务在执行过程中,产生了 100 个微任务,执行每个微任务的时间是 10 毫秒,那么执行这 100 个微任务的时间就是 1000 毫秒,也可以说这 100 个微任务让宏任务的执行时间延长了 1000 毫秒。所以你在写代码的时候一定要注意控制微任务的执行时长。
在一个宏任务中,分别创建一个用于回调的宏任务和微任务,无论什么情况下,微任务都早于宏任务执行。
监听 DOM 变化方法演变
现在知道了微任务是怎么工作的,那接下来我们再来看看微任务是如何应用在 MutationObserver 中的。MutationObserver 是用来监听 DOM 变化的一套方法,而监听 DOM 变化一直是前端工程师一项非常核心的需求。
比如许多 Web 应用都利用 HTML 与 JavaScript 构建其自定义控件,与一些内置控件不同,这些控件不是固有的。为了与内置控件一起良好地工作,这些控件必须能够适应内容更改、响应事件和用户交互。因此,Web 应用需要监视 DOM 变化并及时地做出响应。
虽然监听 DOM 的需求是如此重要,不过早期页面并没有提供对监听的支持,所以那时要观察 DOM 是否变化,唯一能做的就是轮询检测,比如使用 setTimeout 或者 setInterval 来定时检测 DOM 是否有改变。这种方式简单粗暴,但是会遇到两个问题:如果时间间隔设置过长,DOM 变化响应不够及时;反过来如果时间间隔设置过短,又会浪费很多无用的工作量去检查 DOM,会让页面变得低效。
直到 2000 年的时候引入了 Mutation Event,Mutation Event 采用了观察者的设计模式,当 DOM 有变动时就会立刻触发相应的事件,这种方式属于同步回调。
采用 Mutation Event 解决了实时性的问题,因为 DOM 一旦发生变化,就会立即调用 JavaScript 接口。但也正是这种实时性造成了严重的性能问题,因为每次 DOM 变动,渲染引擎都会去调用 JavaScript,这样会产生较大的性能开销。比如利用 JavaScript 动态创建或动态修改 50 个节点内容,就会触发 50 次回调,而且每个回调函数都需要一定的执行时间,这里我们假设每次回调的执行时间是 4 毫秒,那么 50 次回调的执行时间就是 200 毫秒,若此时浏览器正在执行一个动画效果,由于 Mutation Event 触发回调事件,就会导致动画的卡顿。
也正是因为使用 Mutation Event 会导致页面性能问题,所以 Mutation Event 被反对使用,并逐步从 Web 标准事件中删除了。
为了解决了 Mutation Event 由于同步调用 JavaScript 而造成的性能问题,从 DOM4 开始,推荐使用 MutationObserver 来代替 Mutation Event。MutationObserver API 可以用来监视 DOM 的变化,包括属性的变化、节点的增减、内容的变化等。
那么相比较 Mutation Event,MutationObserver 到底做了哪些改进呢?
首先,MutationObserver 将响应函数改成异步调用,可以不用在每次 DOM 变化都触发异步调用,而是等多次 DOM 变化后,一次触发异步调用,并且还会使用一个数据结构来记录这期间所有的 DOM 变化。这样即使频繁地操纵 DOM,也不会对性能造成太大的影响。
我们通过异步调用和减少触发次数来缓解了性能问题,那么如何保持消息通知的及时性呢?如果采用 setTimeout 创建宏任务来触发回调的话,那么实时性就会大打折扣,因为上面我们分析过,在两个任务之间,可能会被渲染进程插入其他的事件,从而影响到响应的实时性。
这时候,微任务就可以上场了,在每次 DOM 节点发生变化的时候,渲染引擎将变化记录封装成微任务,并将微任务添加进当前的微任务队列中。这样当执行到检查点的时候,V8 引擎就会按照顺序执行微任务了。
综上所述, MutationObserver 采用了“异步 + 微任务”的策略。
通过异步操作解决了同步操作的性能问题;
通过微任务解决了实时性的问题。
总结
首先我们回顾了宏任务,然后在宏任务的基础之上,我们分析了异步回调函数的两种形式,其中最后一种回调的方式就是通过微任务来实现的。
接下来我们详细分析了浏览器是如何实现微任务的,包括微任务队列、检查点等概念。
最后我们介绍了监听 DOM 变化技术方案的演化史,从轮询到 Mutation Event 再到最新使用的 MutationObserver。MutationObserver 方案的核心就是采用了微任务机制,有效地权衡了实时性和执行效率的问题。
总结
如果有一些确定好的任务,可以使用一个单线程来按照顺序处理这些任务,这是第一版线程模型。
要在线程执行过程中接收并处理新的任务,就需要引入循环语句和事件系统,这是第二版线程模型。
如果要接收其他线程发送过来的任务,就需要引入消息队列,这是第三版线程模型。
如果其他进程想要发送任务给页面主线程,那么先通过 IPC 把任务发送给渲染进程的 IO 线程,IO 线程再把任务发送给页面主线程。
消息队列机制并不是太灵活,为了适应效率和实时性,引入了微任务。
基于消息队列的设计是目前使用最广的消息架构,无论是安卓还是 Chrome 都采用了类似的任务机制,所以理解了本篇文章的内容后,你再理解其他项目的任务机制也会比较轻松。
思考时间
今天给你留的思考题是:结合消息队列和事件循环,你认为微任务是什么?引入微任务能带来什么优势呢?
结合所学知识,分析下面题目输出:
function executor(resolve, reject) {
let rand = Math.random();
console.log(1)
console.log(rand)
if (rand > 0.5)
resolve()
else
reject()
}
var p0 = new Promise(executor);
var p1 = p0.then((value) => {
console.log("succeed-1")
return new Promise(executor)
})
var p3 = p1.then((value) => {
console.log("succeed-2")
return new Promise(executor)
})
var p4 = p3.then((value) => {
console.log("succeed-3")
return new Promise(executor)
})
p4.catch((error) => {
console.log("error")
})
console.log(2)
欢迎在留言区与我分享你的想法,也欢迎你在留言区记录你的思考过程。感谢阅读,如果你觉得这篇文章对你有帮助的话,也欢迎把它分享给更多的朋友。