调用栈:为什么JavaScript代码会出现栈溢出?

上篇文章中,我们讲到了,当一段代码被执行时,JavaScript 引擎先会对其进行编译,并创建执行上下文。但是并没有明确说明到底什么样的代码才算符合规范。

那么接下来我们就来明确下,哪些情况下代码才算是“一段”代码,才会在执行之前就进行编译并创建执行上下文。一般说来,有这么三种情况:

  1. 当 JavaScript 执行全局代码的时候,会编译全局代码并创建全局执行上下文,而且在整个页面的生存周期内,全局执行上下文只有一份。

  2. 当调用一个函数的时候,函数体内的代码会被编译,并创建函数执行上下文,一般情况下,函数执行结束之后,创建的函数执行上下文会被销毁。

  3. 当使用 eval 函数的时候,eval 的代码也会被编译,并创建执行上下文。

好了,又进一步理解了执行上下文,那本节我们就在这基础之上继续深入,一起聊聊调用栈。学习调用栈至少有以下三点好处:

  1. 可以帮助你了解 JavaScript 引擎背后的工作原理;

  2. 让你有调试 JavaScript 代码的能力;

  3. 帮助你搞定面试,因为面试过程中,调用栈也是出境率非常高的题目。

比如你在写 JavaScript 代码的时候,有时候可能会遇到栈溢出的错误,如下图所示:

那为什么会出现这种错误呢?这就涉及到了调用栈的内容。你应该知道 JavaScript 中有很多函数,经常会出现在一个函数中调用另外一个函数的情况,调用栈就是用来管理函数调用关系的一种数据结构。因此要讲清楚调用栈,你还要先弄明白函数调用栈结构

什么是函数调用

函数调用就是运行一个函数,具体使用方式是使用函数名称跟着一对小括号。下面我们看个简单的示例代码:

var a = 2
function add(){
  var b = 10
  return a+b
}
add()

这段代码很简单,先是创建了一个 add 函数,接着在代码的最下面又调用了该函数。

那么下面我们就利用这段简单的代码来解释下函数调用的过程。

在执行到函数 add() 之前,JavaScript 引擎会为上面这段代码创建全局执行上下文,包含了声明的函数和变量,你可以参考下图:

从图中可以看出,代码中全局变量和函数都保存在全局上下文的变量环境中。

执行上下文准备好之后,便开始执行全局代码,当执行到 add 这儿时,JavaScript 判断这是一个函数调用,那么将执行以下操作:

  • 首先,从全局执行上下文中,取出 add 函数代码。

  • 其次,对 add 函数的这段代码进行编译,并创建该函数的执行上下文可执行代码

  • 最后,执行代码,输出结果。

完整流程你可以参考下图:

就这样,当执行到 add 函数的时候,我们就有了两个执行上下文了——全局执行上下文和 add 函数的执行上下文。

也就是说在执行 JavaScript 时,可能会存在多个执行上下文,那么 JavaScript 引擎是如何管理这些执行上下文的呢?

答案是通过一种叫栈的数据结构来管理的。那什么是栈呢?它又是如何管理这些执行上下文呢?

什么是栈

关于栈,你可以结合这么一个贴切的例子来理解,一条单车道的单行线,一端被堵住了,而另一端入口处没有任何提示信息,堵住之后就只能后进去的车子先出来,这时这个堵住的单行线就可以被看作是一个栈容器,车子开进单行线的操作叫做入栈,车子倒出去的操作叫做出栈

在车流量较大的场景中,就会发生反复的入栈、栈满、出栈、空栈和再次入栈,一直循环。

所以,栈就是类似于一端被堵住的单行线,车子类似于栈中的元素,栈中的元素满足后进先出的特点。你可以参看下图:

什么是 JavaScript 的调用栈

JavaScript 引擎正是利用栈的这种结构来管理执行上下文的。在执行上下文创建好后,JavaScript 引擎会将执行上下文压入栈中,通常把这种用来管理执行上下文的栈称为执行上下文栈,又称调用栈

为便于你更好地理解调用栈,下面我们再来看段稍微复杂点的示例代码:

var a = 2
function add(b,c){
  return b+c
}
function addAll(b,c){
  var d = 10
  result = add(b,c)
  return a+result+d
}
addAll(3,6)

在上面这段代码中,你可以看到它是在 addAll 函数中调用了 add 函数,那在整个代码的执行过程中,调用栈是怎么变化的呢?

下面我们就一步步地分析在代码的执行过程中,调用栈的状态变化情况。

第一步,创建全局上下文,并将其压入栈底。如下图所示:

从图中你也可以看出,变量 a、函数 add 和 addAll 都保存到了全局上下文的变量环境对象中。

全局执行上下文压入到调用栈后,JavaScript 引擎便开始执行全局代码了。首先会执行 a=2 的赋值操作,执行该语句会将全局上下文变量环境中 a 的值设置为 2。设置后的全局上下文的状态如下图所示:

接下来,第二步是调用 addAll 函数。当调用该函数时,JavaScript 引擎会编译该函数,并为其创建一个执行上下文,最后还将该函数的执行上下文压入栈中,如下图所示:

addAll 函数的执行上下文创建好之后,便进入了函数代码的执行阶段了,这里先执行的是 d=10 的赋值操作,执行语句会将 addAll 函数执行上下文中的 d 由 undefined 变成了 10。

然后接着往下执行,第三步,当执行到 add 函数调用语句时,同样会为其创建执行上下文,并将其压入调用栈,如下图所示:

当 add 函数返回时,该函数的执行上下文就会从栈顶弹出,并将 result 的值设置为 add 函数的返回值,也就是 9。如下图所示:

紧接着 addAll 执行最后一个相加操作后并返回,addAll 的执行上下文也会从栈顶部弹出,此时调用栈中就只剩下全局上下文了。最终如下图所示:

至此,整个 JavaScript 流程执行结束了。

好了,现在你应该知道了调用栈是 JavaScript 引擎追踪函数执行的一个机制,当一次有多个函数被调用时,通过调用栈就能够追踪到哪个函数正在被执行以及各函数之间的调用关系。

在开发中,如何利用好调用栈

鉴于调用栈的重要性和实用性,那么接下来我们就一起来看看在实际工作中,应该如何查看和利用好调用栈。

1. 如何利用浏览器查看调用栈的信息

当你执行一段复杂的代码时,你可能很难从代码文件中分析其调用关系,这时候你可以在你想要查看的函数中加入断点,然后当执行到该函数时,就可以查看该函数的调用栈了。

这么说可能有点抽象,这里我们拿上面的那段代码做个演示,你可以打开“开发者工具”,点击“Source”标签,选择 JavaScript 代码的页面,然后在第 3 行加上断点,并刷新页面。你可以看到执行到 add 函数时,执行流程就暂停了,这时可以通过右边“call stack”来查看当前的调用栈的情况,如下图:

从图中可以看出,右边的“call stack”下面显示出来了函数的调用关系:栈的最底部是 anonymous,也就是全局的函数入口;中间是 addAll 函数;顶部是 add 函数。这就清晰地反映了函数的调用关系,所以在分析复杂结构代码,或者检查 Bug 时,调用栈都是非常有用的

除了通过断点来查看调用栈,你还可以使用 console.trace() 来输出当前的函数调用关系,比如在示例代码中的 add 函数里面加上了 console.trace(),你就可以看到控制台输出的结果,如下图:

2. 栈溢出(Stack Overflow)

现在你知道了调用栈是一种用来管理执行上下文的数据结构,符合后进先出的规则。不过还有一点你要注意,调用栈是有大小的,当入栈的执行上下文超过一定数目,JavaScript 引擎就会报错,我们把这种错误叫做栈溢出

特别是在你写递归代码的时候,就很容易出现栈溢出的情况。比如下面这段代码:

function division(a,b){
  return division(a,b)
}
console.log(division(1,2))

当执行时,就会抛出栈溢出错误,如下图:

从上图你可以看到,抛出的错误信息为:超过了最大栈调用大小(Maximum call stack size exceeded)。

那为什么会出现这个问题呢?这是因为当 JavaScript 引擎开始执行这段代码时,它首先调用函数 division,并创建执行上下文,压入栈中;然而,这个函数是递归的,并且没有任何终止条件,所以它会一直创建新的函数执行上下文,并反复将其压入栈中,但栈是有容量限制的,超过最大数量后就会出现栈溢出的错误。

理解了栈溢出原因后,你就可以使用一些方法来避免或者解决栈溢出的问题,比如把递归调用的形式改造成其他形式,或者使用加入定时器的方法来把当前任务拆分为其他很多小任务。

栈空间和堆空间:数据是如何存储的?

对于前端开发者来说,JavaScript 的内存机制是一个不被经常提及的概念 ,因此很容易被忽视。特别是一些非计算机专业的同学,对内存机制可能没有非常清晰的认识,甚至有些同学根本就不知道 JavaScript 的内存机制是什么。

但是如果你想成为行业专家,并打造高性能前端应用,那么你就必须要搞清楚 JavaScript 的内存机制了。

其实,要搞清楚 JavaScript 的内存机制并不是一件很困难的事,在接下来的三篇文章(数据在内存中的存放、JavaScript 处理垃圾回收以及 V8 执行代码)中,我们将通过内存机制的介绍,循序渐进带你走进 JavaScript 内存的世界。

今天我们讲述第一部分的内容——JavaScript 中的数据是如何存储在内存中的。虽然 JavaScript 并不需要直接去管理内存,但是在实际项目中为了能避开一些不必要的坑,你还是需要了解数据在内存中的存储方式的。

让人疑惑的代码

首先,我们先看下面这两段代码:

function foo(){
  var a = 1
  var b = a
  a = 2
  console.log(a)
  console.log(b)
}
foo()
function foo(){
  var a = {name:"极客时间"}
  var b = a
  a.name = "极客邦"
  console.log(a)
  console.log(b)
}
foo()

若执行上述这两段代码,你知道它们输出的结果是什么吗?下面我们就来一个一个分析下。

执行第一段代码,打印出来 a 的值是 2,b 的值是 1,这没什么难以理解的。

接着,再执行第二段代码,你会发现,仅仅改变了 a 中 name 的属性值,但是最终 a 和 b 打印出来的值都是{name:“极客邦”}。这就和我们预期的不一致了,因为我们想改变的仅仅是 a 的内容,但 b 的内容也同时被改变了。

要彻底弄清楚这个问题,我们就得先从“JavaScript 是什么类型的语言”讲起。

JavaScript 是什么类型的语言

每种编程语言都具有内建的数据类型,但它们的数据类型常有不同之处,使用方式也很不一样,比如 C 语言在定义变量之前,就需要确定变量的类型,你可以看下面这段 C 代码:

int main()
{
  int a = 1;
  char* b = "极客时间";
  bool c = true;
  return 0;
}

上述代码声明变量的特点是:在声明变量之前需要先定义变量类型。我们把这种在使用之前就需要确认其变量数据类型的称为静态语言

相反地,我们把在运行过程中需要检查数据类型的语言称为动态语言。比如我们所讲的 JavaScript 就是动态语言,因为在声明变量之前并不需要确认其数据类型。

虽然 C 语言是静态,但是在 C 语言中,我们可以把其他类型数据赋予给一个声明好的变量,如:

c = a

前面代码中,我们把 int 型的变量 a 赋值给了 bool 型的变量 c,这段代码也是可以编译执行的,因为在赋值过程中,C 编译器会把 int 型的变量悄悄转换为 bool 型的变量,我们通常把这种偷偷转换的操作称为隐式类型转换。而支持隐式类型转换的语言称为弱类型语言,不支持隐式类型转换的语言称为强类型语言。在这点上,C 和 JavaScript 都是弱类型语言。

对于各种语言的类型,你可以参考下图:

JavaScript 的数据类型

现在我们知道了,JavaScript 是一种弱类型的、动态的语言。那这些特点意味着什么呢?

  • 弱类型,不需要给变量固定类型,可以使用一个变量在运行过程中保存为不同类型的数据。

  • 动态,代码运行过程中会自动检测数据的类型,不需要在代码中声明数据类型。

那么接下来,我们再来看看 JavaScript 的数据类型,你可以看下面这段代码:

var bar
bar = 12
bar = "极客时间"
bar = true
bar = null
bar = {name:"极客时间"}

从上述代码中你可以看出,我们声明了一个 bar 变量,然后可以使用各种类型的数据值赋予给该变量。

在 JavaScript 中,如果你想要查看一个变量到底是什么类型,可以使用“typeof”运算符。具体使用方式如下所示:

var bar
console.log(typeof bar) //undefined
bar = 12
console.log(typeof bar) //number
bar = "极客时间"
console.log(typeof bar)//string
bar = true
console.log(typeof bar) //boolean
bar = null
console.log(typeof bar) //object
bar = {name:"极客时间"}
console.log(typeof bar) //object

执行这段代码,你可以看到打印出来了不同的数据类型,有 undefined、number、boolean、object 等。那么接下来我们就来谈谈 JavaScript 到底有多少种数据类型。

其实 JavaScript 中的数据类型一种有 8 种,它们分别是:

了解这些类型之后,还有三点需要你注意一下。

第一点,使用 typeof 检测 Null 类型时,返回的是 Object。这是当初 JavaScript 语言的一个 Bug,一直保留至今,之所以一直没修改过来,主要是为了兼容老的代码。

第二点,Object 类型比较特殊,它是由上述 7 种类型组成的一个包含了 key-value 对的数据类型。如下所示:

let myObj = {
  name:'极客时间',
  update:function(){....}
}

从中你可以看出来,Object 是由 key-value 组成的,其中的 vaule 可以是任何类型,包括函数,这也就意味着你可以通过 Object 来存储函数,Object 中的函数又称为方法,比如上述代码中的 update 方法。

第三点,我们把前面的 7 种数据类型称为原始类型,把最后一个对象类型称为引用类型,之所以把它们区分为两种不同的类型,是因为它们在内存中存放的位置不一样。到底怎么个不一样法呢?接下来,我们就来讲解一下 JavaScript 的原始类型和引用类型到底是怎么储存的。

内存空间

要理解 JavaScript 在运行过程中数据是如何存储的,你就得先搞清楚其存储空间的种类。下面是我画的 JavaScript 的内存模型,你可以参考下:

从图中可以看出, 在 JavaScript 的执行过程中, 主要有三种类型内存空间,分别是代码空间、栈空间和堆空间

其中的代码空间主要是存储可执行代码的,这个我们后面再做介绍,今天主要来说说栈空间和堆空间。

栈空间和堆空间

这里的栈空间就是我们之前反复提及的调用栈,是用来存储执行上下文的。为了搞清楚栈空间是如何存储数据的,我们还是先看下面这段代码:

function foo(){
  var a = "极客时间"
  var b = a
  var c = {name:"极客时间"}
  var d = c
}

foo()

前面文章我们已经讲解过了,当执行一段代码时,需要先编译,并创建执行上下文,然后再按照顺序执行代码。那么下面我们来看看,当执行到第 3 行代码时,其调用栈的状态,你可以参考下面这张调用栈状态图:

从图中可以看出来,当执行到第 3 行时,变量 a 和变量 b 的值都被保存在执行上下文中,而执行上下文又被压入到栈中,所以你也可以认为变量 a 和变量 b 的值都是存放在栈中的。

接下来继续执行第 4 行代码,由于 JavaScript 引擎判断右边的值是一个引用类型,这时候处理的情况就不一样了,JavaScript 引擎并不是直接将该对象存放到变量环境中,而是将它分配到堆空间里面,分配后该对象会有一个在“堆”中的地址,然后再将该数据的地址写进 c 的变量值,最终分配好内存的示意图如下所示:

从上图你可以清晰地观察到,对象类型是存放在堆空间的,在栈空间中只是保留了对象的引用地址,当 JavaScript 需要访问该数据的时候,是通过栈中的引用地址来访问的,相当于多了一道转手流程。

好了,现在你应该知道了原始类型的数据值都是直接保存在“栈”中的,引用类型的值是存放在“堆”中的。不过你也许会好奇,为什么一定要分“堆”和“栈”两个存储空间呢?所有数据直接存放在“栈”中不就可以了吗?

答案是不可以的。这是因为 JavaScript 引擎需要用栈来维护程序执行期间上下文的状态,如果栈空间大了话,所有的数据都存放在栈空间里面,那么会影响到上下文切换的效率,进而又影响到整个程序的执行效率。比如文中的 foo 函数执行结束了,JavaScript 引擎需要离开当前的执行上下文,只需要将指针下移到上个执行上下文的地址就可以了,foo 函数执行上下文栈区空间全部回收,具体过程你可以参考下图:

所以通常情况下,栈空间都不会设置太大,主要用来存放一些原始类型的小数据。而引用类型的数据占用的空间都比较大,所以这一类数据会被存放到堆中,堆空间很大,能存放很多大的数据,不过缺点是分配内存和回收内存都会占用一定的时间。

解释了程序在执行过程中为什么需要堆和栈两种数据结构后,我们还是回到示例代码那里,看看它最后一步将变量 c 赋值给变量 d 是怎么执行的?

在 JavaScript 中,赋值操作和其他语言有很大的不同,原始类型的赋值会完整复制变量值,而引用类型的赋值是复制引用地址

所以d=c的操作就是把 c 的引用地址赋值给 d,你可以参考下图:

从图中你可以看到,变量 c 和变量 d 都指向了同一个堆中的对象,所以这就很好地解释了文章开头的那个问题,通过 c 修改 name 的值,变量 d 的值也跟着改变,归根结底它们是同一个对象。

再谈闭包

现在你知道了作用域内的原始类型数据会被存储到栈空间,引用类型会被存储到堆空间,基于这两点的认知,我们再深入一步,探讨下闭包的内存模型。

这里以《10 | 作用域链和闭包 :代码中出现相同的变量,JavaScript 引擎是如何选择的?》中关于闭包的一段代码为例:

function foo() {
  var myName = "极客时间"
  let test1 = 1
  const test = 2
  var innerBar = {
    setName:function(newName){
      myName = newName
    },

    getName:function(){
      console.log(test1)
      return myName
    }

  }
  return innrBar
}
var bar = foo()
bar.setName("极客邦")
bar.getName()
console.log(bar.getName())

当执行这段代码的时候,你应该有过这样的分析:由于变量 myName、test1、test2 都是原始类型数据,所以在执行 foo 函数的时候,它们会被压入到调用栈中;当 foo 函数执行结束之后,调用栈中 foo 函数的执行上下文会被销毁,其内部变量 myName、test1、test2 也应该一同被销毁。

但是在那篇文章中,我们介绍了当 foo 函数的执行上下文销毁时,由于 foo 函数产生了闭包,所以变量 myName 和 test1 并没有被销毁,而是保存在内存中,那么应该如何解释这个现象呢?

要解释这个现象,我们就得站在内存模型的角度来分析这段代码的执行流程。

  1. 当 JavaScript 引擎执行到 foo 函数时,首先会编译,并创建一个空执行上下文。

  2. 在编译过程中,遇到内部函数 setName,JavaScript 引擎还要对内部函数做一次快速的词法扫描,发现该内部函数引用了 foo 函数中的 myName 变量,由于是内部函数引用了外部函数的变量,所以 JavaScript 引擎判断这是一个闭包,于是在堆空间创建换一个“closure(foo)”的对象(这是一个内部对象,JavaScript 是无法访问的),用来保存 myName 变量。

  3. 接着继续扫描到 getName 方法时,发现该函数内部还引用变量 test1,于是 JavaScript 引擎又将 test1 添加到“closure(foo)”对象中。这时候堆中的“closure(foo)”对象中就包含了 myName 和 test1 两个变量了。

  4. 由于 test2 并没有被内部函数引用,所以 test2 依然保存在调用栈中。

通过上面的分析,我们可以画出执行到 foo 函数中“return innerBar”语句时的调用栈状态,如下图所示:

从上图你可以清晰地看出,当执行到 foo 函数时,闭包就产生了;当 foo 函数执行结束之后,返回的 getName 和 setName 方法都引用“closure(foo)”对象,所以即使 foo 函数退出了,“ closure(foo)”依然被其内部的 getName 和 setName 方法引用。所以在下次调用bar.setName或者bar.getName时,创建的执行上下文中就包含了“closure(foo)”。

总的来说,产生闭包的核心有两步:第一步是需要预扫描内部函数;第二步是把内部函数引用的外部变量保存到堆中。

总结

好了,今天就讲到这里,下面我来简单总结下今天的要点。

调用栈

  • 每调用一个函数,JavaScript 引擎会为其创建执行上下文,并把该执行上下文压入调用栈,然后 JavaScript 引擎开始执行函数代码。

  • 如果在一个函数 A 中调用了另外一个函数 B,那么 JavaScript 引擎会为 B 函数创建执行上下文,并将 B 函数的执行上下文压入栈顶。

  • 当前函数执行完毕后,JavaScript 引擎会将该函数的执行上下文弹出栈。

  • 当分配的调用栈空间被占满时,会引发“堆栈溢出”问题。

栈是一种非常重要的数据结构,不光应用在 JavaScript 语言中,其他的编程语言,如 C/C++、Java、Python 等语言,在执行过程中也都使用了栈来管理函数之间的调用关系。所以栈是非常基础且重要的知识点,你必须得掌握。

栈空间和堆空间

我们介绍了 JavaScript 中的 8 种数据类型,它们可以分为两大类——原始类型和引用类型

其中,原始类型的数据是存放在中,引用类型的数据是存放在中的。堆中的数据是通过引用和变量关联起来的。也就是说,JavaScript 的变量是没有数据类型的,值才有数据类型,变量可以随时持有任何类型的数据。

然后我们分析了,在 JavaScript 中将一个原始类型的变量 a 赋值给 b,那么 a 和 b 会相互独立、互不影响;但是将引用类型的变量 a 赋值给变量 b,那会导致 a、b 两个变量都同时指向了堆中的同一块数据。

最后,我们还站在内存模型的视角分析了闭包的产生过程。

思考时间

问题1

关于调用栈留个思考题,你可以看下面这段代码:

function runStack (n) {
  if (n === 0) return 100;
  return runStack( n- 2);
}
runStack(50000)

这是一段递归代码,可以通过传入参数 n,让代码递归执行 n 次,也就意味着调用栈的深度能达到 n,当输入一个较大的数时,比如 50000,就会出现栈溢出的问题,那么你能优化下这段代码,以解决栈溢出的问题吗?

问题2

在实际的项目中,经常需要完整地拷贝一个对象,也就是说拷贝完成之后两个对象之间就不能互相影响。那该如何实现呢?

结合下面这段代码,你可以分析下它是如何将对象 jack 拷贝给 jack2,然后在完成拷贝操作时两个 jack 还互不影响的呢。

let jack = {
  name : "jack.ma",
  age:40,
  like:{
    dog:{
      color:'black',
      age:3,
    },
    cat:{
      color:'white',
      age:2
      }
  }
}

function copy(src){
  let dest
  //实现拷贝代码,将src的值完整地拷贝给dest
  //在这里实现
  return dest
}
let jack2 = copy(jack)

//比如修改jack2中的内容,不会影响到jack中的值
jack2.like.dog.color = 'green'
console.log(jack.like.dog.color) //打印出来的应该是 "black"

欢迎在留言区与我分享你的想法,也欢迎你在留言区记录你的思考过程。感谢阅读,如果你觉得这篇文章对你有帮助的话,也欢迎把它分享给更多的朋友。



请遵守《互联网环境法规》文明发言,欢迎讨论问题
扫码反馈

扫一扫,反馈当前页面

咨询反馈
扫码关注
返回顶部